Randomized Composable Core-sets for Distributed Optimization
Vahab Mirrokni

Mainly based on joint work with:
Hossein Bateni, Aditya Bhaskara,
Hossein Esfandiari, Silvio Lattanzi,
Morteza Zadimoghaddam
Our team: Google NYC Algorithms Research Teams

Market Algorithms/Ads Optimization (search & display)

Infrastructure and Large-Scale Optimization

common expertise: online allocation problems

Large-Scale Graph Mining/Distributed Optimization

Tools: e.g. Clustering

Tools: e.g. Balanced Partitioning
Three most popular techniques applied in our tools

1. Local Algorithms: Message Passing/Label Propagation/Local Random Walks
 ○ e.g., similarity ranking via PPR etc, Connected Components
 ○ Connected components code that’s 10-50 times faster the state-of-the-art

2. Embedding/Hashing/Sketching Techniques
 ○ e.g., linear embedding for balanced graph partitioning to minimize cut
 ○ Improves the state-of-the-art by 26%. Improved flash bandwidth for search backend by 25%. Paper appeared in WSDM’16.

3. Randomized Composable Core-sets for Distributed Computation: This Talk
Agenda

- **Composable core-sets: Definitions & Applications**
 - Applications in Distributed & Streaming settings
 - Applications: Feature Selection, Diversity in Search & Recom.

- **Composable Core-sets for Four Problems: Survey**
 - Diversity Maximization (PODS’14, AAAI’17),
 Clustering (NIPS’14), **Submodular Maximization** (STOC’15),
 and Column Subset Selection (ICML’16)

- **Sketching for Coverage Problems (on arXiv)**
 - Sketching Technique
Composable Core-Sets for Distributed Optimization

Run ALG in each machine

Input Set

Machine 1
T₁

T₁

Machine 2
T₂

S₁

Machine m
Tₘ

Sₘ

Selected Items

Run ALG’ on selected items to find the final output set

Output Set

Selected Items

Selected Items
Composable Core-sets

Setup: Consider partitioning data set T of elements into m sets (T_1, T_2, \ldots, T_m).

$$T = T_1 \cup T_2 \cup \cdots \cup T_m$$

Goal: Given a set function f, find a subset S^* with $|S^*| \leq k$, optimizing $f(S^*)$.

$$\text{opt}(T') = f(S^*)$$

Find: small core-set $S_1 \subseteq T_1$, $S_2 \subseteq T_2$, \ldots, $S_m \subseteq T_m$ such that

$$\frac{1}{c} \text{opt}(S_1 \cup S_2 \ldots \cup S_m) \leq \text{opt}(T_1 \cup T_2 \ldots \cup T_m) \leq c \times \text{opt}(S_1 \cup S_2 \ldots \cup S_m)$$
Application in MapReduce/Distributed Computation

Run ALG in each machine

Run ALG' on selected items to find the final output set

E.g., two rounds of MapReduce
Application in Streaming Computation

- **Streaming Computation:**
 - Processing sequence of n data points “on the fly”
 - Limited storage

- **Use C-composable core-set of size k, for example:**
 - Chunks of size \sqrt{nk}, thus number of chunks is $\sqrt{n/k}$
 - Compute core-set of size k for each chunk
 - Total space: $k\sqrt{n/k} + \sqrt{nk} = O(\sqrt{nk})$
Overview of recent theoretical results

Need to solve (combinatorial) optimization problems on large data

1. **Diversity Maximization**,
 - *PODS’14* by IndykMahdianMahabadiMirrokni
 - for Feature Selection in *AAAI’17* by AbbasiGhadiriMirrokniZadimoghaddam

2. **Capacitated ℓ_p Clustering**, *NIPS’14* by BateniBhaskaraLattanziMirrokni

3. **Submodular Maximization**, *STOC’15* by MirrokniZadimoghaddam

4. **Column Subset Selection** (Feature Selection), *ICML’16* by Alschulter et al.

5. Coverage Problems: **Submitted** by BateniEsfandiariMirrokni
Applications: Diversity & Submodular Maximization

Diverse suggestions
- Play apps
- Campaign keywords
- Search results
- News articles
- YouTube videos

Data summarization
- Feature selection

Exemplar sampling
Feature selection

We have
- Data points (docs, web pages, etc.)
- Features (topics, etc.)

Goal: pick a small set of “representative” features
Five Problems Considered

General: Find a set S of k items & maximize/minimize $f(S)$.

- **Diversity Maximization:** Find a set S of k points, and maximize the sum of pairwise distances i.e. $\max diversity(S) = \sum_{i,j \in S} dist(i, j)$.

- **Capacitated/Balanced Clustering:** Find a set S of k centers and cluster nodes around them while minimizing the sum of distances to S.

- **Coverage/Submodular Maximization:** Find a set S of k items. Maximize submodular function $f(S)$. Generalizing set cover.

- **Column subset selection:** Given a matrix A, find a set S of k columns.
 - Minimize $\| A - \Pi_{A[S]} A \|_F^2$
Diversity Maximization Problem

• Given: A set of \(n \) points in a metric space \((X, \text{dist})\)
• Find a set \(S \) of \(k \) points
• Goal: maximize \(\text{diversity}(S) \) i.e.

\[
\text{diversity}(S) = \text{sum of pairwise distances of points in } S.
\]

\[
\text{diversity}(S) = \sum_{i,j \in S} \text{dist}(i, j)
\]

• Background: Max Dispersion (Halldorson et al, Abbassi et al)

• Useful for feature selection, diverse candidate selection in Search, representative centers...
Core-sets for Diversity Maximization

Two rounds of MapReduce

Run LocalSearch on each machine

Run LocalSearch on selected items to find the final output set

- Arbitrary Partitioning works. Random partitioning is better.
Composable Core-set Results for Diversity Maximization

• Theorem(IndykMahabadiMahdianM.’14): The local search algorithm computes a constant-factor composable core-set for maximizing sum of pairwise distances in 2 rounds:

• Theorem(EpastoM.ZadiMoghaddam’16): A sampling+greedy algorithm computes a randomized 2-approximate composable small-size core-set for diversity maximization in one round.
 • randomized: works under random partitioning
 • small-size: size of core-set is less than k.
Distributed Clustering Problems

Clustering: Divide data into groups containing “nearby” points

Minimize:
- k-center: $\max_i \max_{u \in S_i} d(u, c_i)$
- k-means: $\sum_i \sum_{u \in S_i} d(u, c_i)^2$
- k-median: $\sum_i \sum_{u \in S_i} d(u, c_i)$

Metric space (d, X)

α-approximation algorithm: cost less than $\alpha \cdot \text{OPT}$
Mapping Core-sets for Capacitated Clustering
Capacitated ℓ_p clustering

Problem: Given n points in a metric space, find k centers and assign points to centers, respecting capacities, to minimize ℓ_p norm of the distance vector.

\rightarrow Generalizes balanced k-median, k-means & k-center.

\rightarrow Objective is not minimizing cut size (cf. “balanced partitioning” in the library)

Theorem: For any p and $k<\sqrt{n}$, distributed balanced clustering with

- approx ratio: ‘small constant’ * ‘best single machine guarantee’
- # rounds: 2
- memory: $(n/m)^2$ with m machines

\rightarrow Improves [BMVKV‘12] and [BEL‘13]

(Bateni,Bhaskara,Lattanzi,Mirrokni, NIPS‘14)
Empirical study for distributed clustering

Test in terms of **scalability** and **quality of solution**

Two “base” instances & subsamples
- US graph ~30M nodes
- World graph ~500M nodes

<table>
<thead>
<tr>
<th></th>
<th>Size of seq. inst</th>
<th>Increase in OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>1/300</td>
<td>1.52</td>
</tr>
<tr>
<td>World</td>
<td>1/1000</td>
<td>1.58</td>
</tr>
</tbody>
</table>

Quality: pessimistic analysis

Sublinear running time **scaling**
Submodular maximization

Problem: Given k & submodular function f, find set S of size k that maximizes $f(S)$.

Some applications
- Data summarization
- Feature selection
- Exemplar clustering

Special case: “coverage maximization”: Given a family of subsets, choose a subfamily of k sets, and maximize cardinality of union.
- cover various topics/meanings
- target all kinds of users
Submodular maximization

Problem: Given \(k \) & submodular function \(f \), find set \(S \) of size \(k \) that maximizes \(f(S) \).

Some applications

- Data summarization
- Feature selection
- Exemplar clustering

Special case: “coverage maximization”: Given a family of subsets, choose a subfamily of \(k \) sets, and maximize cardinality of union.

- cover various topics/meanings
- target all kinds of users

[IMMM’14] Bad News: **No deterministic** composable core-set with approx \(\leq \frac{\sqrt{k}}{\log k} \).
Submodular maximization

Problem: Given k & submodular function f, find set S of size k that maximizes $f(S)$.

Some applications
- Data summarization
- Feature selection
- Exemplar clustering

Special case: “coverage maximization”: Given a family of subsets, choose a subfamily of k sets, and maximize cardinality of union.
- cover various topics/meanings
- target all kinds of users

[IMMM’14] Bad News: No deterministic composable core-set with approx $\leq \frac{\sqrt{k}}{\log k}$

Randomization is necessary and useful:
- Send each set randomly to some machine
- Build a coreset on each machine by greedy algorithm
Randomization to the Rescue: Randomized Core-sets

Run GREEDY on each machine

Run GREEDY on selected items to find the final output set

Two rounds of MapReduce
Results for Submodular Maximization: MZ (STOC’15)

- A class of 0.33-approximate randomized composable core-sets of size k for non-monotone submodular maximization. For example, Greedy Algorithm.

- Hard to go beyond $\frac{1}{2}$ approximation with size k. Impossible to get better than $1-\frac{1}{e}$.

- 0.58-approximate randomized composable core-set of size $4k$ for monotone f. Results in 0.54-approximate distributed algorithm in two rounds with linear communication complexity.

- For small-size composable core-sets of k' less than k: $\sqrt{\frac{k'}{k}}$-approximate randomized composable core-set.
Low-Rank Approximation

Given (large) matrix A in $\mathbb{R}^{m \times n}$ and target rank $k << m,n$:

$$\arg\min_{X, \text{rank}(X)=k} \| A - X \|_F^2$$

- Optimal solution: k-rank SVD
- Applications:
 - Dimensionality reduction
 - Signal denoising
 - Compression
 - ...
Column Subset Selection (CSS)

- Columns often have important meaning
- **CSS**: Low-rank matrix approximation in column space of A

$$\arg \min_{S \subset [n], \ |S| = k} \| A - \Pi_{A[S]} A \|_F^2$$

A and $A[S]$ are matrices with $m \times n$ and $m \times k$ dimensions, respectively. The approximation $\Pi_{A[S]} A$ is a matrix with the same dimensions as A but with columns selected from $A[S]$. The diagram illustrates the process of selecting a subset of columns from A to form $A[S]$. The goal is to approximate A with a lower rank matrix $\Pi_{A[S]} A$.
DISTGREEDY: GCSS(A, B, k) with L machines

Machine 1 Machine 2 ... Machine L
DISTGREEDY: GCSS(A,B,k) with L machines
DISTGREEDY: GCSS(A,B,k) with L machines

Machine 1

Machine 2

Machine L

\[S_1 = \text{GREEDY}(A, T_1, \frac{32k}{\sigma_{\text{min}}(\text{OPT}_k)}) \]

\[S_2 = \text{GREEDY}(A, T_2, \frac{32k}{\sigma_{\text{min}}(\text{OPT}_k)}) \]

\[S_L = \text{GREEDY}(A, T_L, \frac{32k}{\sigma_{\text{min}}(\text{OPT}_k)}) \]
DISTGREENY: GCSS(A,B,k) with L machines

Machine 1

\[T_1 \]

Machine 2

\[T_2 \]

\[S_1 = \text{GREEDY} \left(A, T_1, \frac{32k}{\sigma_{\text{min}}(\text{OPT}_k)} \right) \]

Machine L

\[T_L \]

\[S_2 = \text{GREEDY} \left(A, T_2, \frac{32k}{\sigma_{\text{min}}(\text{OPT}_k)} \right) \]

Designated machine

\[S_L = \text{GREEDY} \left(A, T_L, \frac{32k}{\sigma_{\text{min}}(\text{OPT}_k)} \right) \]

\[S = \text{GREEDY} \left(A, \bigcup_{i=1}^{L} S_i, \frac{12k}{\sigma_{\text{min}}(\text{OPT}_k)} \right) \]
DISTGREEDY for column subset selection

1 round result: DISTGREEDY with \(r = O \left(\frac{k}{\sigma_{\min}(OPT)} \right) \) gives objective value \(\Omega \left(\frac{f(OPT_k)}{\kappa(OPT_k)} \right) \)

Multi-round result: \(O \left(\frac{\kappa(OPT)}{\varepsilon} \right) \) rounds gives objective value \(\Omega \left((1 - \varepsilon) f(OPT_k) \right) \)
Empirical result for column subset selection

- Training accuracy on massive data set (news 20.binary, 15k x 100k matrix)
- Speedup over 2-phase algorithm in parentheses

<table>
<thead>
<tr>
<th>n</th>
<th>Rand</th>
<th>2-Phase</th>
<th>DISTGREEDY</th>
<th>PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>54.9</td>
<td>81.8 (1.0)</td>
<td>80.2 (72.3)</td>
<td>85.8 (1.3)</td>
</tr>
<tr>
<td>1000</td>
<td>59.2</td>
<td>84.4 (1.0)</td>
<td>82.9 (16.4)</td>
<td>88.6 (1.4)</td>
</tr>
<tr>
<td>2500</td>
<td>67.6</td>
<td>87.9 (1.0)</td>
<td>85.5 (2.4)</td>
<td>90.6 (1.7)</td>
</tr>
</tbody>
</table>

Interesting experiment: What if we partition more carefully and not randomly?

- **Recent observation:** If we treat each machine separately, it does not help much! Random partitioning is good even compared with more careful partitioning.
Coverage Problems

Problems: Given a set system \((n \text{ sets and } m \text{ elements})\),
1. “**K-coverage**”: pick \(k\) sets to max. size of union
2. “set cover”: cover *all* elements with least number of sets
3. “set cover with outliers”: cover \((1-\lambda)m\) elements with least number of sets
Coverage Problems

Problems: Given a set system \((n \text{ sets and } m \text{ elements})\),

1. "\(K\)-coverage": pick \(k\) sets to max. size of union
2. “set cover”: cover all elements with least number of sets
3. “set cover with outliers”: cover \((1-\lambda)m\) elements with least number of sets

Greedy Algorithm: Pick a subset with the maximum marginal coverage,
Coverage Problems

Problems: Given a set system \((n \text{ sets and } m \text{ elements})\),
1. "K-coverage": pick \(k\) sets to max. size of union
2. "set cover": cover all elements with least number of sets
3. "set cover with outliers": cover \((1-\lambda)m\) elements with least number of sets

Greedy Algorithm: Pick a subset with the maximum marginal coverage,

- 1-1/e-approx. To \(k\)-coverage, \(\log n\)-approximation for set cover...
- Goal: Achieve good fast approximation with minimum memory footprint
 - Streaming: elements arrive one by one, not sets
 - Distributed: linear communication and memory independent of the size of ground set
Submodular Maximization vs. Maximum Coverage

Coverage function is a special case of submodular function:

\[f(R) = \text{cardinality of union of family } R \text{ of subsets} \]

\[f(R) = \left| \bigcup_{S \in R} S \right| \]
Submodular Maximization vs. Maximum Coverage

Coverage function is a special case of submodular maximization:

\[f(R) = \text{cardinality of union of family } R \text{ of subsets} \]

\[f(R) = | \bigcup_{S \in R} S | \]

So problem solved?

[MirrokniZadimoghaddam STOC’15]: Randomized composable core-sets work

[Mirzasoleiman et al NIPS’14]: This method works well in Practice!
Submodular Maximization vs. Maximum Coverage

Coverage function is a special case of submodular maximization:
\[f(R) = \text{cardinality of union of family } R \text{ of subsets} \]
\[
 f(R) = \left| \bigcup_{S \in R} S \right|
\]

So problem solved?

[MirrokniZadimoghaddam STOC’15]: Randomized composable core-sets work

[Mirzasoleiman et al NIPS’14]: This method works well in Practice!

No. This solution has several issues for coverage problems:

- **It requires** expensive oracle access **to computing cardinality of union!**
- Distributed Computation: Send whole “sets” around?
- **Streaming:** Handles set arrival model, does not handle “element” arrival model!
Why can’t we apply core-sets for submodular functions?

What if the subsets are large? Can we send a sketch of them?
Idea: Send a sketch for each set (e.g., sample of elements)

Run ALG in each machine

Sketch of subsets T_1

Machine 1 T_1

Machine 2 T_2

Machine m T_m

Family of subsets

Sketch of subsets T_m

Selected Items

Run ALG’ on selected items to find the final output set

Output Set

Question: Does any approximation-preserving sketch work?
Approximation-preserving sketching is not sufficient.

Idea: Use sketching to define a \((1\pm\varepsilon)\)-approx oracle to cardinality of union function?

[BateniEsfandiariMirrokni’16]:

- **Thm 1**: A \((1\pm\varepsilon)\)-approx sketch of coverage function May NOT Help
 - Given an \((1\pm\varepsilon)\)-approx oracle to coverage function, we get \(n^{0.49}\) approximation
Approximation-preserving sketching is not sufficient.

Idea: Use sketching to define a \((1 \pm \varepsilon) \)-approx oracle to cardinality of union function?

[BateniEsfandiariMirrokni’16]:

- **Thm 1**: A \((1 \pm \varepsilon) \)-approx sketch of coverage function May NOT Help
 - Given an \((1 \pm \varepsilon) \)-approx oracle to coverage function, we get \(n^{0.49} \) approximation

- **Thm 2**: With some tricks, MinHash-based sketch + proper sampling WORKS
 - Sample elements not sets (different from previous coreset idea)
 - Correlation between samples (MinHash)
 - Cap degrees of elements in the sketch (reduces memory footprint)
Bipartite Graph Formulation for Coverage Problems

Bipartite graph $G(U, V, E)$
- U: sets
- V: elements
- E: membership

Set cover problem: Pick minimum number of sets that cover all elements.

Set cover with outliers problem: Pick minimum number of sets that cover a $1 - \lambda$ fraction of elements.

Maximum coverage problem: Pick k sets that cover maximum number of elements.
Sketching Technique

Construction

- Dependent sampling: Assign hash values from [0,1) to elements.
- Remove any element with hash value exceeding p.
- Arbitrarily remove edges to have max-degree Δ for elements.

Sample parameters

1) Δ is easy to compute.
2) Δ can be found via a round of MapReduce.
Sketch: sparse subgraph with sufficient information

For instance with many sets, parallelize using core sets.

Any single-machine greedy algorithm
Proof ingredients:

1. Parameters are chosen to produce small sketch (indep. of size of ground set): $O(\#\text{sets})$
 - Challenge: how to choose parameters in distributed or streaming models
2. Any α-approximation on the sketch is an $\alpha + \varepsilon$ approximation for original instance
Summary of Results for Coverage Functions

- Special case of submodular maximization
- Problems are **NP-hard** and **APX-hard**
- Greedy algorithm gives best guarantees

Good implementations (linear-time)
- Lazy greedy algorithm
- Lazier-than-lazy algorithm

Problem: Graph should be stored in RAM

Our algorithm:
- Memory $O(#\text{sets})$
- Linear-time
- Optimal approximation guarantees
- MapReduce, streaming, etc.

GREEDY
1) Start with empty solution
2) Until “done,”
 (a) find set with best marginal coverage, and
 (b) add it to tentative solution.
Bounds for distributed coverage problems

From [BEM’16]: 1) Space indep. of size of sets or ground set, 2) Optimal Approximation Factor, 3) Communication linear in #sets (indep. of their size), 4) small #rounds

Previous work: [39]=[CKT’11], [42]=[MZ’15], [19]=[BENW’16], [43]=[MBKK’16]

<table>
<thead>
<tr>
<th>Problem</th>
<th>Credit</th>
<th># rounds</th>
<th>Approximation</th>
<th>Load per machine</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-cover</td>
<td>[39]</td>
<td>$O(\frac{1}{\epsilon \delta} \log m)$</td>
<td>$1 - \frac{1}{\epsilon} - \epsilon$</td>
<td>$O(mkn^\delta)$</td>
<td>submodular functions</td>
</tr>
<tr>
<td>k-cover</td>
<td>[42]</td>
<td>2</td>
<td>0.54</td>
<td>max$(mk^2, mn/k)$</td>
<td>submodular functions</td>
</tr>
<tr>
<td>k-cover</td>
<td>[19]</td>
<td>$\frac{1}{\epsilon}$</td>
<td>$1 - \frac{1}{\epsilon} - \epsilon$</td>
<td>max$(mk^2, mn/k)$</td>
<td>submodular functions</td>
</tr>
<tr>
<td>k-cover</td>
<td>Here</td>
<td>3</td>
<td>$1 - \frac{1}{\epsilon} - \epsilon$</td>
<td>$\tilde{O}(n + m)$</td>
<td>-</td>
</tr>
<tr>
<td>Set cover w outliers</td>
<td>Here</td>
<td>3</td>
<td>$(1 + \epsilon) \log \frac{1}{\lambda}$</td>
<td>$\tilde{O}(n + m)$</td>
<td>-</td>
</tr>
<tr>
<td>Set cover</td>
<td>[43]</td>
<td>$\log(nm)$</td>
<td>$(1 + \epsilon) \log n$</td>
<td>$\Omega(mn^{1-\epsilon})$</td>
<td>Submodular cover</td>
</tr>
<tr>
<td>Set cover</td>
<td>Here</td>
<td>r</td>
<td>$(1 + \epsilon) \log n$</td>
<td>$\tilde{O}(nm^{O(\frac{1}{r})} + m)$</td>
<td>-</td>
</tr>
</tbody>
</table>
Bounds for streaming coverage problems

From [BEM’16]: 1) Space indep. of size of ground set, 2) Optimal Approximation Factor, 3) “Edge” vs “set” arrival

Previous work: [14]=[CW’15], [22]=[DIMV’14], [24]=[ER’14], [31]=[IMV’15], [49]=[SG’09]

<table>
<thead>
<tr>
<th>Problem</th>
<th>Credit</th>
<th># passes</th>
<th>Approximation</th>
<th>Space</th>
<th>Arrival</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-cover</td>
<td>[49]</td>
<td>1</td>
<td>1/4</td>
<td>$\tilde{O}(m)$</td>
<td>set</td>
</tr>
<tr>
<td>k-cover</td>
<td>Here</td>
<td>1</td>
<td>$1 - 1/e - \varepsilon$</td>
<td>$\tilde{O}(n)$</td>
<td>edge</td>
</tr>
<tr>
<td>Set cover w outliers</td>
<td>[24, 14]</td>
<td>p</td>
<td>$O(\min(n^{p+1}, e^{-1/p}))$</td>
<td>$\tilde{O}(m)$</td>
<td>set</td>
</tr>
<tr>
<td>Set cover w outliers</td>
<td>Here</td>
<td>1</td>
<td>$(1 + \varepsilon)\log\frac{1}{\lambda}$</td>
<td>$\tilde{O}_\lambda(n)$</td>
<td>edge</td>
</tr>
<tr>
<td>Set cover</td>
<td>[14, 49]</td>
<td>p</td>
<td>$(p+1)n^{\frac{1}{p+1}}$</td>
<td>$\tilde{O}(m)$</td>
<td>set</td>
</tr>
<tr>
<td>Set cover</td>
<td>[22]</td>
<td>4^k</td>
<td>$4^k\log n$</td>
<td>$\tilde{O}(nm^{\frac{1}{k}})$</td>
<td>set</td>
</tr>
<tr>
<td>Set cover1</td>
<td>[31]</td>
<td>p</td>
<td>$O(p\log n)$</td>
<td>$\tilde{O}(nm^{O(\frac{1}{p})})$</td>
<td>set</td>
</tr>
<tr>
<td>Set cover</td>
<td>Here</td>
<td>p</td>
<td>$(1 + \varepsilon)\log n$</td>
<td>$\tilde{O}(nm^{O(\frac{1}{p})} + m)$</td>
<td>edge</td>
</tr>
</tbody>
</table>
Empirical Study

Public datasets

- Social networks
- Bags of words
- Contribution graphs
- Planted instances

- Very small sketches (0.01–5%) suffice for obtaining good approximations (95+%).

- Without core sets, can handle in <1h XXXB edges or elements.
Feature Selection (ongoing)

Goal: Pick k “representative” features

Based on composable core sets

<table>
<thead>
<tr>
<th>k</th>
<th>Random clusters</th>
<th>Best cluster method</th>
<th>Set cover (pairs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>0.8538</td>
<td>0.851</td>
<td>0.862</td>
</tr>
<tr>
<td>1000</td>
<td>0.8864</td>
<td>0.8912</td>
<td>0.8936</td>
</tr>
<tr>
<td>2500</td>
<td>0.9236</td>
<td>0.9234</td>
<td>0.9118</td>
</tr>
</tbody>
</table>

1) Pick features that cover all entities
2) Pick features that cover many pairs (or triples, etc.) of entities
Summary: Distributed Algorithms for Five Problems

Define on a metric space & composable core-sets apply.

1. Diversity Maximization,
 - PODS’14 by IndykMahdianMahabadiM.
 - for Feature Selection in AAAI’17 by AbbasiGhadiriMirrokniZadimoghaddam

2. Capacitated ℓ_p Clustering, NIPS’14 by BateniBhaskaraLattanziM.

Beyond Metric Spaces. Only *Randomized* partitioning apply.

3. Submodular Maximization, STOC’15 by M. Zadimoghaddam
4. Feature Selection (Column Subset Selection), ICML’16 by Alschulter et al.

Needs adaptive sampling/sketching techniques

5. Coverage Problems: by BateniEsfandiarM
Our team: Google NYC Algorithms Research Team

Recently released external team website: research.google.com/teams/nycalg/

Market Algorithms/Ads Optimization (search & display)

Common expertise: online allocation problems

Infrastructure and Large-Scale Optimization

Large-Scale Graph Mining/Distributed Optimization

Tools: e.g. Clustering

Tools: e.g. Balanced Partitioning
THANK YOU

mirrokni@google.com
Local Search for Diversity Maximization [KDD’13]

- Used for sum of pairwise distances
- Algorithm [Abbasi, Mirrokni, Thakur]
 - Initialize S with an arbitrary set of k points which contains the two farthest points
 - While there exists a swap that improves diversity by a factor of $\left(1 + \frac{\epsilon}{n}\right)$
 » Perform the swap
- For Remote-Clique
 - Number of rounds: $\log_{\left(1+\frac{\epsilon}{n}\right)} k^2 = O\left(\frac{n}{\epsilon} \log k\right)$
 - Approximation factor is constant.